
I. Introduction

The control loop is an essential part of the process 
industry. High-performance results must be had by each 
control loop so that the output quality is well maintained 
and as required [1]. However, every process industry will 
surely have a poor performance control loop. Based on a 
survey [2], 10% of 26,000 PID controllers from different 
process industries had poor performance results. The poor 
performance is caused by the appearance of oscillations 
which could be identified through the data trend of the 
process variables. The occurrence of an Oscillation in a 
control loop can reach about 30% up to 41% [3], [4]. The 
oscillations refer to oscillations that can cause excessive 
controller movement of the control loops and increase the 
wear of the instruments in the control loop. Therefore, the 
occurrence of oscillations in the control loop should be 
reduced. An initial step is to detect oscillations of a control 
loop in the process industry.

Oscillation detection is challenging in the process 
industry, especially in control loops. Oscillations 
occurring in control loops are usually caused by stiction, 
dead zone, or hysteresis in control valves, external 
disturbances received by the process, and poor controller 
tuning [5], [6]. One type of oscillation that is usually found 
in industry is intermittent oscillation. An intermittent 
oscillation is an oscillation that appears intermittently 
within a period and suddenly [7]. It needs to be detected 
so that the performance degradation of the control loop 

can be reduced in the long term and sustainably.
Research on intermittent oscillation detection in 

control loops has already been published. However, the 
number of studies is still limited to using ruled-based 
methods that are implemented offline (manual or without 
being connected to the network) [8]–[12]. Several offline 
methods are the Intrinsic Time-scale Decomposition (ITD) 
method, zero crossing of Auto-Covariance (ACF) method, 
peaks wavelet method, and Discrete Fourier Transform 
(DFT) method. These methods have difficulties when 
applied online (networked) because the determination of 
performance results and the selection of data window size 
are not appropriate [10]. In addition, oscillation detection 
using the analysis method of looking for peaks in the 
signal power spectrum is not easy. This method only looks 
for the highest peak amplitude, so it is less suitable for 
detecting intermittent oscillations in periods that vary each 
cycle [13]. Along with the development of technology, the 
use of ruled-based methods and working offline needs to 
be changed by using simple methods and being able to 
work online. This is adapted to the smart factory concept. 

The smart factory concept is a new concept in the 
industrial revolution 4.0 era that encourages the use 
of intelligent sensors, devices, and machines so that 
factories can continuously collect productivity data [14]. 
The use of Artificial Intelligence (AI) techniques has 
played a role in building experience-based models from 
process data so that decisions can be made more quickly 
and effectively, do not require complex rules, and can 
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adjust according to the given pattern to improve their 
performance [15], [16]. Many studies have been published 
about oscillation detection using AI, such as building 
a detection model using Deep Feedforward Network 
(DFN) model [16], Deep Convolutional Neural Network 
(DCNN) [17], Artificial Neural Network (ANN) [18], 
Deep Belief Network - Adaptive Lifting Wavelet (DBN-
ALW) [19], Extreme Gradient Boosting (XGBoost) [20], 
and Multilayer Perceptron (MLP), Convolutional Neural 
Network (CNN), and recurrent neural network (RNN) 
[21]. However, most of them still apply offline and deep 
learning methods so that they cannot detect in real-time 
when there is a disturbance and the computation time is 
too long.

Therefore, this study will develop a method to detect 
intermittent oscillations using the K-Nearest Neighbor 
(KNN)-based Semi-Supervised Learning (SSL) method 
that can work online. The KNN-based SSL method is 
chosen because the model built can combine supervised 
learning and unsupervised learning. It can handle the 
amount of labeled data using pseudo-label generation 
techniques with shorter computation time than deep 
learning. The SSL method applied is self-training that 
conducts the learning process by using its prediction 
results to train itself. The benefits of self-training and 
the KNN algorithm are chosen as the basis of the model 

because it has simple and efficient characteristics so that 
any simple or complex modeling can be incorporated into 
the self-training framework [22]–[24].

II.	 Method

This study proposes an intermittent oscillation 
detection model to classify the cause of oscillation in the 
Tennessee Eastman Process (TEP) shown in Figure 1. The 
stages in this study are data collection, data preprocessing, 
design of detection model using SSL KNN-based offline, 
model implementation online, and model performance 
evaluation.

A.	 Data Collection

The data used in this study are time series data of 
output variables which are the results of the TEP program 
simulation for 12 hours with a total of 52 variables 
consisting of 11 manipulated variables and 41 measured 
variables. The TEP program is an overall chemical plant 
dynamics first proposed by Down and Vogel [25]. To 
optimize the results obtained, this study will focus on the 
processes that occur in the reactor. The reactor used in TEP 
is an exothermic type. This reactor produces heat, requiring 
cooling water to maintain the reactor temperature. The 
control structure of the TEP reactor is shown in Figure 2. 

There are three faults in the reactor, consisting of 
step, random variation, and sticking. However, random 
variation in the reactor is not applied and is replaced by 
adding a tuning error failure. The tuning fault type is used 
in this study by changing the proportional gain constants 
of TC-10 and TC-18. The details and name labeling of 
each fault that causes oscillation are modified according 
to Table 1. 

B.	 Data Preprocessing 

The TEP simulated data for 12 hours were segmented 
according to the window size in Table 2. The window size 
segmentation reference is based on the research of Henry [26]. 
Furthermore, the data segments were feature extracted into 
three domains (time, spectral, and statistical domains) using 
the Time Series Feature Extraction Library (TSFEL) [27]. 

Figure 1. The proposed intermittent oscillation detection model

Figure 2. Process and Instrumentation Diagram (P&ID) reactor of TEP 
where CWS/R is cooling water  water steam/return, SC is speed stirred 
control, TC is temperature control, TI/PI/LI are temperature/pressure/
level indicators [25]
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The extracted features were selected using Pearson 
correlation. This correlation will be compared against the 
label. The chosen features have a high correlation with the 
label. The feature selection results are then divided into 
training and testing data with a composition of 80% and 
20%.

C.	 K-Nearest Neighbor-based Semi-Supervised Learning 

The KNN-based SSL model is built using the self-
training method first proposed by Scudder [23]. The 
pseudo-labeling implementation is done by training a 
KNN model with correctly labeled data and then using the 
results to label the unlabeled data to get a pseudo-label. 
After that, the pseudo-labeled data with high prediction 
probability is combined with the initial true-labeled data 
to serve as the basis for building a self-training model. 
Figure 3 shows the flow of the self-training method. The 
performance results of a proper self-training method 
depend on the pseudo-labeled data selected in the model 
training procedure [28].

The evaluation for this offline model uses accuracy 
and F1-score. If the evaluation result of the initial model 
is not good, the hyperparameter variation is performed 
according to Table 2. The best offline evaluation results 
will be implemented in the online model.

Online implementation is executed by subscribing 
to the TEP simulation output data from the broker using 
the Message Queuing Telemetry Transport (MQTT) 
communication protocol at certain time intervals. Detection 
will be done when the data length matches the window size 
of the best model. If it does not fulfill, the detection will wait 
until the data length fits the window size. The complete data 
will be extracted with TSFEL, and features will be selected 
according to the results of the previous feature selection 
offline. The data is then classified using the KNN-based 
SSL model. The result of testing the online model is the 
time it takes for the model to detect and classify the type of 
oscillation that appears correctly.

On online detection of oscillations of each 
disturbance type, the simulation is run for 30 minutes. 
Each disturbance type was triggered after the first 100 
seconds. The correct detection is considered if the model 
can detect the disturbance type 30 times. Meanwhile, the 
online intermittent oscillation detection test triggered the 
disturbance type for 30 minutes and then turned it off for 15 
minutes. After that, the other disturbance type was trigged 
for 30 minutes. The behavior of the model in classifying 
the intermittent oscillation types were tested. The detection 
time of each oscillation change was calculated to compare 
it with the average time of the online detection of each 
disturbance type. This study uses several Python libraries, 
such as pandas, numpy, seaborn, matplotlib, scikit-learn, 
tsfel, and paho-mqtt.

III.	 Results and Discussion

A.	 Data Collection and Preprocessing Results

Based on the simulation results for data collection, 
the number of data types obtained is four types of time 
series data with a total data length for the three types of 
oscillations of 129,600 data and the normal type of 43,200 
data. Furthermore, the data is segmented based on the 
window size of 100, 150, and 200. The segmentation 
results are extracted to obtain characteristics based on the 
three domains.

The extraction results obtained are 9620 features. 
These features are extracted from the factors i.e., Fast 
Fourier Transform (FFT) mean coefficient, mean absolute 
deviation, Empirical Cumulative Distribution Function 
(ECDF) percentile, spectral distance, variance, spectral 
kurtosis, peak-to-peak distance, human range energy, and 
turning point.  Each factor can produce more than one 
feature. These features must be selected so that the model 
built has high accuracy. Feature selection uses Pearson 
correlation coefficient. The selection results obtained were 
142 features out of 9620, or about 1.5%, used to create 
the model. The feature selection results were split into test 
and training data based on Table 3. The training data is 
again divided into labelled data to train the initial KNN 
model and unlabelled data to be used as pseudo-labelled 
data. The division for labelled data is 40% and 60% for 
unlabelled data.

Tabel 1.  Details of disturbance type applied

Tabel 2.  Details of disturbance type applied
Figure 3. Flowchart of the self-training method [23]

Disturbance 
Name Process Variable Oscillation Type Label 

Normal Normal/no-fault Normal IDV(0)

IDV(4) Reactor cooling water 
inlet temperature Step IDV(1)

IDV(14) Reactor cooling water 
valve Sticking IDV(2)

Tuning 
Error

Proportional gain 
constant Tuning Error IDV(3)

Hyperparameter Default Value Variation

Window size 100 [100, 150, 200]

k-value 5 [5 – 15]

Distance equation (p) euclidean [manhattan, euclidean]
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B.	 Self-Training Results

The KNN-based SSL model will use the KNN 
algorithm to create pseudo-labels for unlabeled training 
data and make predictions for new data. This is due to the 
use of the self-training method so that the learning process 
of the ML model can use its predictions to teach itself. 
The initial KNN model and the initial KNN-based SSL 
were built using default parameters according to Table 
2, namely a k-value of 5, the use of Euclidean equations, 
and a window size of 100. The test results obtained for 
the initial KNN model for accuracy are 80.92%, and the 
F1-score value is 80.96%. These performance results will 
affect the results of the pseudo-label prediction, so it is 
necessary to observe the training data and the probability 
of confidence level so that the pseudo-label prediction 
results can be even better. 

The results of the effect of different limit values for the 
probability of confidence level with the accuracy results 
of the KNN-based SSL model are shown in Figure 4. The 
higher the probability of confidence level, the higher the 
results’ accuracy. The greatest increase in accuracy occurs 
when the probability value is more than 0.88, which is 
80.92%, and the rest, there is no increase and tends to 
be stable until the probability is 1. This is because the 
observation is very similar to the label.

The results of the initial KNN model are compared 
with the KNN-based SSL model to see the effect of self-
training. Based on Figure 5, the results of the initial KNN-
based SSL model have no difference from the initial KNN 
model for pseudo-labeling because the KNN-based SSL 
model created only adds new training data, namely pseudo-
label training data, without eliminating the old, labeled 
training data. Therefore, the results will be the same as 
the testing and validation results of the KNN model for 
pseudo-labeling. In this model, self-training does not 

affect the applied performance. However, the application 
for this research still uses the KNN-based SSL model.

C.	 Hyperparameters Tuning Results

Hyperparameter tuning is carried out here to optimize 
the performance results of the KNN-based SSL model. 
The hyperparameter variations performed for the KNN-
based SSL model are the k value and the distance equation, 
as shown in Table 2. For the confidence level, the 
threshold value will be fixed, which is 0.88. In addition, 
adding window size parameters also determines the results 
obtained. The hyperparameter tuning results for the model 
built with the best accuracy value and F1-score value will 
be selected as the final model for oscillation detection 
model building. The tuning validation is validated by 
cross-validation to obtain optimal results. 

The best model from the hyperparameter tuning results 
of the KNN-based SSL model has a k value of 12, using 
the Manhattan equation, and a window size of 100. The 
window size variation validation is shown in Figure 6. The 
results of this tuning are appropriate because it is mainly 
related to the use of the Manhattan distance, which is 
suitable for high dimensionality in the data used. Suppose 
the test results of this final model are compared with the 
test results of the initial model, as shown in Figure 7. In 
that case, the initial model has an accuracy and F1-score of 
80.92% and 80.92%, while the final model has an accuracy 
and F1-score of 96.15% and 96.15%. These results have 
significantly improved compared to the initial KNN-
based model, preventing the model from being overfitted. 
However, the accuracy and F1-score values did not reach 
perfection because the most misdetections were IDV(1), 

Window Size Labeled Data Unlabeled 
Data Test Data Total

100 483 726 519 1728

150 322 484 346 1152

200 241 363 260 864

Tabel 3.  Details of the data used

Figure 4. Effect of confidence level on accuracy for the KNN-based SSL 
model

Figure 5. Effect of the self-training model

Figure 6. Window size variation validation results
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as the true label was predicted to be IDV(0). This is due to 
the damping process of the tuning controller in the TC so 
that its oscillation signal merges into the natural signal of 
the system. However, the results of this best model will be 
applied online.

D.	 Prediction Results

The prediction results obtained by the program when 
performing online predictions for each type of fault are 
shown in Figure 8. In the graph, condition 1 indicates 
that the detection result is correct. In contrast, condition 0 
after the 100th second suggests that the detection result is 
wrong, and condition 0 before the 100th second indicates 
that no detection has been made.

The details of the detection time required for the 
program to detect the stability of each disturbance are 
shown in Table 4. The average detection time obtained is 
305 seconds or 5 minutes and 5 seconds. The performance 
result for the accuracy of the online program brought is 
92.11%.

The program can detect very well without errors 
during normal or undisturbed conditions. This excellent 
detection needs to be the foundation because the normal 
operation is the default value that should not have any 
errors in the detection. Meanwhile, the condition when the 
disturbance is given is not as it should be. At the beginning 
of the IDV(1) or IDV(2) disturbance, the program does 
not immediately detect IDV(1) or IDV(2) stably, but a 
detection error occurs. This is due to the influence of the 
ripple-type disturbance that affects the initial moment, so 
the detection looks similar to other disturbances. After 
passing the 265th second, the oscillation detection starts to 
stabilize to predict IDV(1), while IDV(2) only stabilizes 
after passing the 370th second. For IDV(3), the detection 
experiences errors from the start of the disturbance until 
the 280th second. This is because when this disturbance 
is applied, there will be a very high increase in value 
compared to the other two disturbances so that for the first 
280 seconds, the system predicts it more like IDV(1) and 
IDV(2). 

We compared the proposed system’s detection time 
with the DCNN and XGBoost methods. Different IDV 
names are applied from each model, so the IDV naming 
is adapted to this study. In addition, the test conditions are 
also different. Wu et al. used sampling lengths of 20 and 
10 with a three-minute interval [17], while this study and 
Rabba et al. used a data length of 100 with a one-second 
interval [20]. However, the sampling period is the same, 
which is 15 seconds. Two disturbances were selected for 
the DCNN model, namely IDV(1) and IDV(2), while 
the XGBoost model selected three disturbances, namely 
IDV(1), IDV(2), and IDV(3). These choices are compared 
and shown in Table 5. The detection time calculation 
is based on the time it takes for the model to detect the 

Tabel 4.  Details of the detection time

Figure 7. Comparison of the initial model with the final model

Figure 8. The result of prediction on (a) IDV(0); (b) IDV(1); (c) IDV(2); 
and (d) IDV(3)

(a)

(b)

(c)

(d)

Oscillation Type Detection Time (s)

IDV(1) 265

IDV(2) 370

IDV(3) 280

Average 305
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disturbances 30 sequential times correctly. Overall, the 
average detection time required for each fault type since 
initiation was 305 seconds. The model detected the cause 
of the oscillation faster than the DCNN model, with sample 
length times of 10 and 20, by 96.72%, and the XGBoost 
model by 69.51%.

E.	 Online Intermittent Oscillation Detection Test

The online intermittent oscillation test was conducted 
twice, as shown in Figure 9. The program was able to 
correctly detect the type of disturbance, although the 
model was still unable to predict directly when the type of 
disturbance was given. This is normal because oscillations 
will not be formed immediately when a new disturbance is 
given. It takes some time for the oscillation to be visible so 
that it can be detected. In addition, when the disturbance 
is removed, oscillations still occur, and detection is still 
not predicted to be normal immediately because it still 
takes time for the oscillations to return to normal and not 
immediately.

IDV(1) has an initial error when a disturbance is 
applied and a final error when the disturbance is stopped. 
That error is a detection error into IDV(2). This is because 

when the disturbance is applied, there is a spike in 
oscillation similar to IDV(2), but it stabilizes afterward. 
Even so, the program created is appropriate despite a slight 
misdetection when the disturbance is given.  

IV.	 Conclusion

The research that has been conducted has the main 
objective of building a KNN-based SSL model in an 
intermittent oscillation detection program that can work 
online and in real time. The online periodic oscillation 
detection program that has been created is influenced 
by several factors, namely the window size selection 
and hyperparameter values. Based on offline testing and 
validation results, the KNN-based SSL model has the best 
performance results with a data window size of 100, the 
number of nearest neighbours or k value of 5 and using 
the Manhattan distance equation as it is suitable for high 
dimensionality in the data used. The model performs well 
in classifying the oscillation type from various causes with 
an accuracy value and F1-score of 96.15% and 96.15%. 
The result of testing the online detection program that has 
been carried out can detect oscillations with an average 
time of 305 seconds for each class. It was faster than the 
detection time using the DCNN model, which needs 600 
seconds, and the detection time XGBoost, which requires 
517 seconds.
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